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INTRODUCTION

"4 The assigned tasks consist of two parts: (1) Recognition of 3-D objects given a

2-D projection. (2) Optimal resource allocation. Both assignments involved appli-

cation of the optimization algorithm Alopex which was developed by the principal

investigators.

Our investigation on these assignments are described in section I and I. We

investigated 3-D objects with a view toward identification of airplanes. A system

capable of rapid identification of airplanes can be built based on our findings. For

the second assignment we investigated the problem of assigning in an optimal way

a number of guns to targets. Alopex has been found to converge rapidly to optimal

assignments. We also compared the performance of the Alopex algorithm with

the widely used method of simulated annealing. Alopex was found to converge

considerably faster in all examples tried. Accession For
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I. 3-D PATTERN RECOGNITION

1. Introduction

The identification of three-dimensional objects from their two-dimensional im-

ages suffers many difficulties. In addition to the loss of one dimension, magnification

and orientation of the imaged object are usually unknown. The method of identi-

fying three-dimensional objects has been investigated by a number of researchers.

In order to retain the translation, rotation, size and shape information, Dudani

et al s ] calculated up to fourteen moments as features to represent the image, while

Wallace et al201 used a complex representation of the boundary curves to obtain

Fourier coefficients as the set of descriptors. In both reports, libraries containing

the representations of candidate objects had to be constructed.

Chien et all6] proposed a method which needs multiple views of the object,

represented by structures called quadtrees and octrees. Banhu, [2' Wang[2 11 and

Ben-Arie[3 114 [51 used other sets of features to match pictures with objects.

In our method the input pattern (picture) is represented by a two-dimensional

matrix whose elements (zeroes and ones) are pixels. The description of the three-

dimensional objects (templates) consists of three-dimensional arrays of zeroeF and

ones specifying the boundaries. Comparisons are made between picture an~d tem-

plates by forming orthogonal projections of the templates using different Euler an-

gles. Our method, unlike the others, requires less storage to des ribe the objects

but defines a dynamic process by which the simple stored template information is

transformed to match the picture.
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2. Method

In our studies a picture (2-D input) is identified with one of a set of known

objects (templates). Binary arrays are used, with object represented by ones and

background by zeroes. The templates are arrays of 64x64x64 elements. The pictures

are matrices of 64x64 elements.

2.1 Rotation of the Templates

Since a projection has to be obtained before comparison can be made, three

angles need to be chosen. We are using three Euler angles to represent the rotation

of three-dimensional objects. There are many choices for the three Euler angles.

For example, in a right-handed coordinate system, there are twelve sets of Euler

angles.11 11 171 For our purpose, the following set is chosen. Let the coordinate sys-

tem be Oxyz before rotation and OXYZ after rotation. Let OA be the line of

intersection between the Oxy and OXY planes. Define as 01 the angle between Oz

and OZ axes, 02 that between OA and Ox and 03 the angle between OA and OX.

The ranges of these angles are

00 < 01 < 1800, 00 < 0 2 < 3600, 00 < 03 < 360.

The templates are rotated using these angles and projected on the Oxy plane. The

disparity between a template projection and the picture is represented by a cost

function, which we wish to optimize.
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2.2 The Alopex Algorithm

The Alopex algorithm was proposed for solving optimization problems. M l0 11'9 1

The optimization procedure is stochastic and iterative, In every iteration, all vari-

ables that determine the cost function change by small increments, and the cost

function is computed. The change of a variable depends stochastically on the change

of the cost function and the change of the variable as calculated from the prior two

iterations. Two parameters control the optimization process: the probability or

stochasticity p and the step size 6. The Alopex algorithm used here is defined

below.

Let F(zl,... zx) be the cost function and z...Xn the variables to be adjusted.

The change in the i - th variable at the n - th iteration is given by

z(n) =_(n-i) () (n)1
Xi + b'i

where the increments b(') are given by

(n" )  P () b) with probability p
= (1.2)

-PI (')b with probability (1 - p)

where

) +1 if m * IXl - ) - (n- 2) * [F(n'- ) - F('n- 2) ] >0
p i ( = (1.3)

-1 if m * [Xl, - )- X1 2 ) I * F(- 1 ) - F( - 2 )J < 0

The value of m is +1 for maxi,nization, -1 for minimization. Similar algorithms

have been employed by us successfully in many optimization problems.r 151

3. Examples and Results

We explored several types of cost functions such as those which match bound-

aries, or areas, or a combination of both. We also used different optimization
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procedures by considering cost functions that are to be minimized or maximized.

We found that minimization of the following cost function is effective:

F' = (I -i) 2  (1.4)

where j is the template number, k the particular template from which the picture is

formed, i is the pixel and lik, Ti' are zeroes or ones representing the input (picture)

and orthogonal projection of the template j respectively. The input is defined by

the three Euler angles Oe, Ok, O . The template projection is defined by the Euler

angles 0, 1,32. The general problem is to obtain the global minimum of F by

varying the angles a, I b2 .

In employing the Alopex algorithm, many different step sizes have been tried,

and it was found that they affect the speed of convergence. A 6 of about one degree

is appropriate for good convergence. If 6 is smaller more iterations are needed to

reach the optimum, while larger 6's produce larger fluctuations in the cost function.

The probability p plays also a very important role in the process. It is necessary

to keep p less than 1 to prevent trapping of the process in local extrema and larger

than 0.5 in order to drive the process towards optimization. A good operational

value is around 0.75.

In understanding this general problem the following classes of problems have

been investigated.

3.1 One 3-D Template

We chose a single template in the shape of the letter L. The input is an arbitrary

orthogonal projection of the template. In this study we test the convergence of the

angles "to e as a function of step 6 and probability p. We illustrate the convergence

of the process by presenting results shown in Figs. 1-3. The step size and probability

5



were kept at 1 and 0.75 respectively. In these examples, which are typical of most

runs, the optimum was reached within a few hundred iterations. At the optimum,

the variables 01,02 and 03 reached the values of the input parameters E1, 02 and

e 3 .

In Fig. 1 the process started with initial angles 01 = 60° , 02 = 270*, and 03 =

2900 while the template input angles were 81 = 1100, 02 = 2300 and 03 = 335' .

It is seen that the cost decreased to a minimum in about 200 iterations, and the

corresponding input angles were found. Notice that the initial angles differed from

the input angles by less than 45*.

In Fig. 2 the differences between input and initial angles were larger. The cost

function reached a local minimum in about 150 iterations and was trapped for a

while and then reached the global minimum. This shows that the cost function, in

order to reach the global minimum, had to overcome some local minima. If this

difference is further increased, the cost function may not reach the global minimum

with the chosen step size and probability. There are many local minima in this

three-dimensional pattern recognition cost function.

Fig. 3 shows the result of an annealing schedule, in which the step size was

reduced from 10 to 0.20 after 200 iterations, otherwise the conditions were the same

as those in Fig. 1.

3.2 Five 2-D Templates

In oraer to further investigate the problem of convergence with highly disparate

initial and input angles the simpler problem of 2-D template identification was

considered. Five templates were formed by crossing two rectangles. The templates

are similar in appearance differing only by 50 to 100 pixels (Fig. 4). In Fig. .5 the

costs, F,, for the five templates are shown as functions of iteration number. The
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input was derived from template V using an input angle E = 190'. The piocess

was initialized with angles 1800, 150,2200,2300 and 2650 for the five templates

'Y V 'v UA u W j~aUL A& 'r'... JI- '- ---- ----

by the largest initial cost function (red trace in Fig. 5). As seen, the cost function

for template V reached the lowest value, and thus made the correct identification.

Many simulations have been done with different input and initial conditions. We

found that the input can be recognized as long as the difference between input

and initial angles is within 900 because of a deep local minimum around input

0 = 9 + 1800.

3.3 3-D Object Identification

In the above cases we studied identification from 2-D templates and tests of

convergence for a single 3-D template. Now we present simulation results of object

identification using several 3-D templates.

Two 3-D templates

Two templates are used here, which are the 2-D patterns used above (Fig. 4)

with a common thickness added as a third dimension. The parameters 6 and p

in Alopex were the same as before. The rotation variables of the template were

independent of one another. We found that correct recognition and assignment of

angles were achieved if the input and initial angles were within ±450.

Five 3-D object identification

In this study, the templates used are the five 3-D objects resembling airplanes

whose z-y projections are shown in Fig. 6. Along the z-axis different thicknesses

were used. The templates differ between 30 and 200 pixels. In the Alopex algorithm,

7



we start with arbitrary Euler angles () defining the template projections. The

cost function used is given by equation (1.4). We have found that Alopex always

converges but not necessarily to the global minimum which defines the corrcct

identification. As it was found above in the case of two 3-D templates, if the initial

value of the variables were within 45', Alopex made the correct identification. By

running Alopex a number of times and starting with random initial values for the

Euler angles, the global minimum is always found as illustrated by the following

two examples.

Example 1:

The two parameters used for controlling the Alopex process in Eq. (1.2) are

b = 1 and p = 0.78. Table 1 shows the results of four optimization runs. In each run

the input is a projection of the template 2 with input angles listed. Each run consists

of six indenpendent trials in which random initial orientations are chosen for each

of the five templates. Eac.h trial was terminated after 700 iterations. The Table

lists for each trial the lowest cost function, the winning template and the iteration

at which the minimum was reached. As seen in each run the correct template was

identified.

Example 2:

In this example, the same parameters 6 and p were used. The inputs are from

template 4 with different set of angles. Again, it can be seen in Table 2 that the

object was correctly identified.

In addition to the cost function defined by Eq. (1.4) we have investigated the

effectiveness of other cost functions such as moments, boundaries and others. Thus

far the one defined by equation (1.4) gives the best results.

8



From our extensive computer simulations on 3-D pattern recognition, given a

2-D projection as input, we conclude:

(a) The Alopex optimization converges to the global minimum if the initial orien-

tation of the template is within 450 of the input values.

(b) In the most general case in which the input orientation is totally unknown, the

correct identification can always be achieved by performing a small number of

trials with randomly chosen initial orientations.
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II. OPTIMAL RESOURCE ALLOCATION

1. Introduction

Resource allocation is a well known NP-complcte class of problems. No poly-

nomial time solution is known. However, stochastic methods have been classically

applied, some of which have given good results but with long, impractical run-

timeslisi for large problE ms. ALOPEX being finely parallel, can achieve op .,miza-

tion, within reasonable time limits. Further substantial improvement is possible, if

the program is implemented on a parallel machine like the Connection Machine 2.

What remains to be done is to investigate methods of controlling the dynamics of

the problem.

It is the objective of this research to obtain the best set of assignments for

different facilities to perform a given set of tasks. We are given the efficiencies with

which each facility can carry out each task, and the interations, i.e., the extend to

which one task interferes with or enhances the efficiency of a facility to carry out a

different task.

To make the problem more specific, we take the facilities to be guns and the

tasks to be hitting targets. Other examples of the same formulation of the resource

assignment problem easily come to mind, such as:

(1) Assignment of proper jobs to human resources.

(2) Distribution of resources to various demand locations in a cost effective way.

(3) Best use of facilities and personnel in disaster relief.
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2. Specific Formulation

Our approach uses the Alopex method of optimization, and thus explores the

parallelism inherent in the resource allocation problem.

Given a set of guns and a set of targets, we make initially random assignments.

These assignments are changed incrementally and iteratively, using the Alopex

algorithm 9' and a scalar cost function constructed from the expected success rate

for the various targets.

We consider a specific formulation of the problem as defined by the following

quantities and relations. A number of practical problem can be represented within

this formalism, and the effectiveness of the Alopex optimization can be evaluated.

We define:

E0 : Efficiency of gun i to hit target j.

aij: Assignment of gun i to fire at target j, where

aij = 1 and 0 < t ij < 1.0 (2.1)

0iik: Mutual Enhancement coefficient of gun i to hit target j, if gun i is

also assigned to target k.

We assume the performance of any gun i to be limited by the normalization con-

dition given by Eq. (2.1). The resource allocation problem is, therefore, defined as

the proper adjustment of aij which denote the assignments of guns to targets with

the aim of maximizing the probability of hits.

With our formulation, the probability of gun i hitting target j is:

P = .fi-(i + Yak-C. ) (2.2)
k

Equation (2.2) expresses our assumption that the efficiency Eq is enhanced (or

reduced) by an amount determined by the assignments of the gun i to other targets

k and the interaction coefficients Vrijk.
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The probability of a target j being hit is therefore:

P, = i- 1(i - P) (2.3)

We have constructed a cost function,

F= (1- pj) 2  (2.4)

which is to be minimized by varying aij.

3. Experiments and Results

In a series of computer simulations we have examined the performance of the

Alopex algorithms when applied to a variety of problems in which we have assumed

different numbers n of facilities (guns) to be assigned to the performance of m tasks

(hitting targets). Different distributions of efficiencies eii and interactions aijk were

assumed.

Some results of these preliminary investigations are presented. Two parameters

determine the dynamics of the optimization process. These are the step size 6 by

which the assignments aj are changed in each iteration, and the probability p that

enters into the Alopex algorithms I]. In the following simulation runs we present

the convergence properties of the algorithm. In the following simulation runs we

present the convergence properties of the algorithm. The ai, were initially assigned

random values between 0 and 1, subject to the normalization condition Eq. (2.1).

Example 1:

We assume that 2 guns are available to fire at 3 targets. The efficiencies (,, are

given in Table 3(a). It is seen that with our assumptions gun 1 has a high efficiency

for hitting target 2, gun 2 has reasonably high efficiencies for hitting targets I and

3, but is poor in hitting target 2. It is intuitively obvious that gun I should be

12



assigned mostly to target 2 and perhaps part of the time to target 3 while gun 2

should divide it's efforts between targets 1 and 3.

In Table 3(b) we show the result of an optimization run in which the step size

was 6 = 0.015, since the ai3 range from 0 to 1.0 (this is 1.5% of the dynamic range)

and the probability p in the Alopex algorithm (Eq. 1.1-1.3) was assumed to be

p = 0.75. In this run all interactions aij were taken to be zero. We see from Table

3(b) that our intuitive expectations are confirmed by the assignments generated by

Alopex. Figure 7 shows the cost function F as a function of iteration numbers.

Example 2:

In another simulation, we took 4 guns and 4 targets. Table 4(a) shows the

efficiencies of guns for each of the targets. Note that, again, the efficiencies suggest

an obvious assignment: gun 1 is best for hitting target 2, gun 2 is good only for

target 3, gun 3 for target 1 and gun 4 for target 4. When Alopex is applied to this

problem, with aijk kept at zero, as in the previous example, we obtain the expected

results reflected by the high assignments of the guns to the targets they are best in

hitting as seen in Table 4(b). Note the high probabilities of hitting the targets.

Figure 8 shows the cost function plotted against iteration numbers for this

example. A 6 = 0.02 and p = 0.80 was used in the Alopex algorithm.

Example 3:

In this example, we again took 4 guns and 4 targets, but the efficiencies were

assumed as shown in Table 5(a). The efficiencies do not suggest any obvious as-

signments, because some of the guns have equal efficiencies in hitting 2 or more

targets, and some targets can be hit equally well by 2 or more guns. When Alopex

was applied to this problem with 6 = 0.01 and p = 0.75, we get the assignments

for the best cost function in 1000 iterations as shown in Table 5(b). Figure 9 shows

the variation of cost function versus iteration number.

13



Ezample 4:

Two separate simulations were conducted with the same number of guns and

targets and also the same associated efficiencies as in Example 2 except non-zero

values for orjk were used. In the first simulation we set the mutual enhancement

coefficients 0 rijk = +0.1, thus enhancing the efficiencies. This input gave higher

probabilities Pj. The cost function shown in Figure 10(a) reached low values within

1000 iterations. In the second simulation we chose negative mutual enhancement

coefficients Oijk = -0.1, thus reducing the efficiencies. This reduced the probabilities

Pj for all targets, compared with the run where aijk = 0.0 (Example 2). Figure

10(b) shows the cost function versus iteration number. Note that the cost ,'emains

high.

4. Timing Issues

Figure 11 is a plot of number of parameters aci to be optimized (with is the

product of the number of guns and number of targets) versus the VAX-8800 (UL-

TRIX OS) cpu time per 1000 iterations. As can be seen, the cpu time is linear to

the number of parameters within the range of parameters considered.

We find,

t = 1.01 * (No. of parameters) sec/1000 iterations.

As every parameter is optimized independent of others parameters in every

iteration, dependent only on the scalar value F, the computation time would be

expected to vary linearly with the square root of the number of parameters. if tOw

program is run on a parallel machine like the Connection Machine - 2. This. of

course, depends on how the problem is mapped. In fact a properly mapped problem

could be solved in a time that depended weakly on the number of parameters,

depending on the architecture of the machine.

14



5. Comparison with Simulated Annealing

We have successfully applied the Alopex algorithm to the resource allocation

problem and good assignments have been obtained for a set of guns to hit a set

of targets. Our simulations have shown that the Alopex algorithm is applicable to

such a problem.

The other stochastic optimization algorithm is the widely used simulated

annealingC][lll. We will compare the performance of Alopex with simulated an-

nealing for the resource allocation problem.

5.1 Simulated Annealing (SA)

This is a heuristic optimization technique. The algorithm, based on the

Metropolist1"4 method, is stochastic and iterative. In every iteration the cost func-

tion is evaluated after performing random changes in the variables. If the cost

function has improved over the preceding iteration, the changes in the variables are

kept. Otherwise the changes are accepted with a probability

p =-- exp(-AF/3)

where # is an adjustable parameter, analogous to temperature in statistical me-

chanics. The process of annealing consists of devising a schedule for reducing ,3 as

the iteration number increases. Customarily, # is kept constant over a number of

iteration L, called the chain length. The process is then described in terms of a

Markov chain.

5.2 Numerical Examples

In the problem of guns and targets, the same equations, (2.1)-(2.4), are used

for Alopex and SA to optimize the assignments, ai,. Identical initial conditions and

step sizes, 6, are used.

15



In the first example, we consider 2 guns firing at 3 targets. The enhancements

aijk are taken to be zero and efficiencies cij are those given in Table 3(a). We used

as control parameters 6 = 0.015, p = 0.78 in Alopex, and 6 = 0.015, L=50, Oo = 0.5

in simulated annealing. The control value 0 is decreased by 10% after each chain

length.

Figure 12(a) shows the evolution of the cost function for Alopex and 12(b)

that for SA. It can be seen that the optimal result is obtained by both methods,

but Alopex converges in about 220 iterations compared with the 2500 iterations

required in SA.

The second example treats - guns and 4 targets. The efficiencies are shown in

Table 6. Now the chain length is chosen to be L = 100. The remaining parameters

are the same as in example 1. Fig. 13(a),(b) again show the superior performance

of Alopex. Notice that no annealing has been used in the Alopex. Past experience

has shown that the Alopex performance can be improved by gradually increasing p

(Eq. 1.2) which is analogous to annealing.

6. Conclusions

The problem of the resource allocation has been investigated by applying

Alopex to a specific problem. We conclude:

(a) Alopex could be applied to practical problem of this type.

(b) The performance of Alopex was superior to SA in the examples investigated.

16
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Figure Captions

Fig. 1 Cost function versus iteration number for a 3-D template (L-shaped). In-

put angles are 0 = 110', E2 = 230' and E3 = 335' . Initial angles are

01 = 600, 02 = 2700 and 03 = 290'. 6 = 10 and p = 0.75.

Fig. 2 Cost function versus iteration number for a 3-D template (L-shaped). In-

put angles are e. = 28.50, 0 2 = 153.60 and E3 = 298.30. Initial angles

are 01 =300° , 02=250 and 03=200. 6= 1' and p =0.75.

Fig. 3 Cost function versus iteration number for a 3-D template (L-shaped) with

annealing. Input angles are 81 = 110 ° , 02 = 2300 and E3 = 335' . Initial

angles are 01 = 60° , 02 = 2700 and 03 = 2900. 6 = 10 for first 200

iterations then 6 = 0.20 for the rest. p = 0.75.

Fig. 4 Five 2-D templates.

Fig. 5 Cost functions versus iteration number for five 2-D templates. Input

is from template V with an angle ) = 1900. Initial angles are 01 =

1800, 02 = 1500, 03 = 2200, 04 = 2300 and 05 = 2650 respectively. 6 = 10

and p = 0.75. Template V is shown in red.

Fig. 6 Five projections of 3-D templates.

Fig. 7 Cost function versus iteration number for resource allocation with 2 guns

and 3 targets. 6 = 0.015, p = 0.75, orjk = 0 and cij as shown in Table

3(a).

Fig. 8 Cost function versus iteration number for resource allocation with 4 guns

and 4 targets. 6 = 0.02, p = 0.8, aik = 0 and E,j as shown in Table 4(a).

Fig. 9 Cost function versus iteration number for resource allocation with 4 guns

and 4 targets. 6 = 0.01, p = 0.75, a,) k = 0 and E,) as shown in Table 5(a).

Fig. 10 Cost function versus iteration number for resource allocation with 4 guns

and 4 targets. 6 = 0.02, p = 0.8, Ojk = +0.1 in (a), U,,k = -0.1 in (b)

and (,, as shown in Table 5(a).
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Fig. 11 A plot of CPU time for 1000 iterations versus number of parameters.

Fig. 12 Cost function versus iteration number for resource allocation with 2 guns

and 3 targets. Efficiencies are given in Table 3(a). rijk = 0.0. (a) Alopex

with 6 = 0.015, p = 0.78. (b) SA with L = 50,/3 = 0.5 and b = 0.015.

Fig. 13 Cost function versus iteration number for resource allocation with 4 guns

and 4 targets. Efficiencies are given in Table 6. 0 ijk = 0.0. (a) Alopex

with 6 = 0.015, p = 0.75. (b) SA with L = 100,/3 = 0.5 and 6 = 0.015.
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Fig. 4(l)
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Table i

Trial 1 2 3 4 5 A Trial 1 2 3 4 5

From,,, 128 80 127 79 9 24 F,,,,, 38 40 85 38 66 24

Tempi. 3 1 3 1 2 2 Tempi. 2 2 5 2 4 2

Iter. 472 350 449 298 424 681 ter. 382 370 483 234 589 504

(1) Input template 2, a = 800, 6 = 266*, - = 55'. (2) Input template 2, a = 38, = 1650, -Y= 230.

Trial 1 2 3 4 5 6 Trial 1 2 3 4 5 6

Fniin 13 10 102 102 260 264 Fili, 107 13 112 62 13 120

Tempi. 2 2 3 3 2 1 Tempi. 5 2 5 1 2 5

Iter. 491 468 351 502 665 553 Iter. 123 355 253 574 672 333

(3) Input template 2, cr = 1330, 6 = 210, -y = 750 . (4) Input template 2, a = 3110, 6 = 3220, -y = 1620.

Table 2

Trial 1 2 3 4 5 6 Trial 1 2 3 4 5 6

Fm1, 222 138 12 16 165 321 Flisis 21 68 69 68 69 11

Tempi. 1 5 4 4 5 4 Tempi. 4 5 5 5 4 4

Iter. 659 441 594 170 629 659 Iter. 635 258 584 246 491 241

(1) Input template 4, a = 80*, 6 266', = 550 . (2) Input template 4, a = 3110, f = 3220, y = 1620.

Trial 1 2 3 4 5 6 Trial 1 2 3 4 5 6

Fmi,, 27 70 76 12 19 19 Fn,, 1, 262 13 7 271 9 288

Tempi. 4 2 2 4 4 4 Tempi. 1 4 4 2 4 5

Iter. 535 343 504 137 498 632 hter. 601 169 285 264 549 669

(3) Input template 4, a = 380, f = 1650, -1 = 23'. (4) Input template 4, a = 256', P = 70', "1 = 1300.
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Table 3

Target 1 2 3

Target 1 2 3
G 1 0.00 0.66 0.34

G 1 0.70 0.95 0.83 u

u n 2 0.72 0.00 0.28

n 2 0.90 0.65 0.90 Prob.

of hit 0.65 0.63 0.46

(a): Efficienes (b): Assignments

Table 4

Target 1 2 3 4

Target 1 2 3 4 1 0.00 0.94 0.04 0.01
G

1 0.70 0.95 0.85 0.91 2 0.06 0.00 0.92 0.02

G u
2 0.90 0.75 0.99 0.87 3 0.86 0.08 0.00 0.05

U n

2 0.95 0.85 0.80 0,89 4 0.11 0.02 0.01 0.85

4 0.80 0.85 0.60 0.99 Pob.

of hit 0.82 0.82 0.80 0.95

(a): Eff n (b): Asngnn ms
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Table 5

Target 1 2 3 4

Target 1 2 3 4 1 0.02 0.15 0.70 0.96
G

1 0.90 0.95 0.75 0.95 2 0.97 0.00 0.02 0.00
G u

2 0.90 0.85 0.95 0.70 3 0.02 0.96 0.00 0.01
u a

3 0.90 0.85 0.70 0.60 4 0.00 0.00 0.99 0.00
n

4 0.90 0.85 0.95 0.80 Prob.
of hit 0.82 0.83 0.87 0.81

(a): Efficiencies (b): Assignments

Table 6

Target 1 2 3 4

1 0.65 0.85 0.70 0.90
G

2 0.80 0.80 0.50 0.85
u

3 0.70 0.60 0.80 0.80
n

4 0.70 0.90 0.90 0.80

Efficiencies
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MISSI ON

Of
Rome Air Development Center

i RADC plans and executes research, development, test and

selected acquisition programs in support of Command, Control,

Communications and Intellzgence (C3 I) activities. Technical and

engineering support within areas of competence is provided to

ESD Program Offices (POs) and other ESD elements to

perform effective acquisition of C3I systems. The areas of

technical competence include communications, command and

control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state

sciences, elect romagnetics, and propagation, and electronic

reliability/maintainability and compatibility.


